Combat_integrate
Usage
ComBat_integrate(
  srtMerge = NULL,
  batch = NULL,
  append = TRUE,
  srtList = NULL,
  assay = NULL,
  do_normalization = NULL,
  normalization_method = "LogNormalize",
  do_HVF_finding = TRUE,
  HVF_source = "separate",
  HVF_method = "vst",
  nHVF = 2000,
  HVF_min_intersection = 1,
  HVF = NULL,
  do_scaling = TRUE,
  vars_to_regress = NULL,
  regression_model = "linear",
  scale_within_batch = FALSE,
  linear_reduction = "pca",
  linear_reduction_dims = 50,
  linear_reduction_dims_use = NULL,
  linear_reduction_params = list(),
  force_linear_reduction = FALSE,
  nonlinear_reduction = "umap",
  nonlinear_reduction_dims = c(2, 3),
  nonlinear_reduction_params = list(),
  force_nonlinear_reduction = TRUE,
  neighbor_metric = "euclidean",
  neighbor_k = 20L,
  cluster_algorithm = "louvain",
  cluster_resolution = 0.6,
  ComBat_params = list(),
  seed = 11
)Arguments
- srtMerge
- A merged Seurat object that includes the batch information. 
- batch
- A character string specifying the batch variable name. 
- append
- Logical, if TRUE, the integrated data will be appended to the original Seurat object (srtMerge). 
- srtList
- A list of Seurat objects to be checked and preprocessed. 
- assay
- The name of the assay to be used for downstream analysis. 
- do_normalization
- A logical value indicating whether data normalization should be performed. 
- normalization_method
- The normalization method to be used. Possible values are "LogNormalize", "SCT", and "TFIDF". Default is "LogNormalize". 
- do_HVF_finding
- A logical value indicating whether highly variable feature (HVF) finding should be performed. Default is TRUE. 
- HVF_source
- The source of highly variable features. Possible values are "global" and "separate". Default is "separate". 
- HVF_method
- The method for selecting highly variable features. Default is "vst". 
- nHVF
- The number of highly variable features to select. Default is 2000. 
- HVF_min_intersection
- The feature needs to be present in batches for a minimum number of times in order to be considered as highly variable. The default value is 1. 
- HVF
- A vector of highly variable features. Default is NULL. 
- do_scaling
- A logical value indicating whether to perform scaling. If TRUE, the function will force to scale the data using the ScaleData function. 
- vars_to_regress
- A vector of variable names to include as additional regression variables. Default is NULL. 
- regression_model
- The regression model to use for scaling. Options are "linear", "poisson", or "negativebinomial" (default is "linear"). 
- scale_within_batch
- Whether to scale data within each batch. Only valid when the - integration_methodis one of- "Uncorrected",- "Seurat",- "MNN",- "Harmony",- "BBKNN",- "CSS",- "ComBat".
- linear_reduction
- The linear dimensionality reduction method to use. Options are "pca", "svd", "ica", "nmf", "mds", or "glmpca" (default is "pca"). 
- linear_reduction_dims
- The number of dimensions to keep after linear dimensionality reduction (default is 50). 
- linear_reduction_dims_use
- The dimensions to use for downstream analysis. If NULL, all dimensions will be used. 
- linear_reduction_params
- A list of parameters to pass to the linear dimensionality reduction method. 
- force_linear_reduction
- A logical value indicating whether to force linear dimensionality reduction even if the specified reduction is already present in the Seurat object. 
- nonlinear_reduction
- The nonlinear dimensionality reduction method to use. Options are "umap","umap-naive", "tsne", "dm", "phate", "pacmap", "trimap", "largevis", or "fr" (default is "umap"). 
- nonlinear_reduction_dims
- The number of dimensions to keep after nonlinear dimensionality reduction. If a vector is provided, different numbers of dimensions can be specified for each method (default is c(2, 3)). 
- nonlinear_reduction_params
- A list of parameters to pass to the nonlinear dimensionality reduction method. 
- force_nonlinear_reduction
- A logical value indicating whether to force nonlinear dimensionality reduction even if the specified reduction is already present in the Seurat object. 
- neighbor_metric
- The distance metric to use for finding neighbors. Options are "euclidean", "cosine", "manhattan", or "hamming" (default is "euclidean"). 
- neighbor_k
- The number of nearest neighbors to use for finding neighbors (default is 20). 
- cluster_algorithm
- The clustering algorithm to use. Options are "louvain", "slm", or "leiden" (default is "louvain"). 
- cluster_resolution
- The resolution parameter to use for clustering. Larger values result in fewer clusters (default is 0.6). 
- ComBat_params
- A list of parameters for the sva::ComBat function, default is an empty list. 
- seed
- An integer specifying the random seed for reproducibility. Default is 11.