Package index
- 
          AnnotateFeatures()
- AnnotateFeatures Annotate features in a Seurat object with additional metadata from databases or a GTF file.
- 
          BBKNN_integrate()
- BBKNN_integrate
- 
          CC_GenePrefetch()
- Prefetch cycle gene
- 
          CSS_integrate()
- CSS_integrate
- 
          CellCorHeatmap()
- CellCorHeatmap
- 
          CellDensityPlot()
- CellDensityPlot
- 
          CellDimPlot()
- Visualize cell groups on a 2-dimensional reduction plot
- 
          CellDimPlot3D()
- 3D-Dimensional reduction plot for cell classification visualization.
- 
          CellScoring()
- CellScoring
- 
          CellStatPlot()
- Statistical plot of cells
- 
          ComBat_integrate()
- Combat_integrate
- 
          Conos_integrate()
- Conos_integrate
- 
          CreateDataFile()
- CreateDataFile
- 
          CreateMetaFile()
- CreateMetaFile
- 
          DefaultReduction()
- Find the default reduction name in a Seurat object.
- 
          DynamicHeatmap()
- Heatmap plot for dynamic features along lineages
- 
          DynamicPlot()
- DynamicPlot
- 
          EnrichmentPlot()
- EnrichmentPlot
- 
          EnsureSeurat5()
- Ensure Seurat object is V5-compatible
- 
          FeatureCorPlot()
- Features correlation plot This function creates a correlation plot to visualize the pairwise correlations between selected features in a Seurat object.
- 
          FeatureDimPlot()
- Visualize feature values on a 2-dimensional reduction plot
- 
          FeatureDimPlot3D()
- 3D-Dimensional reduction plot for gene expression visualization.
- 
          FeatureHeatmap()
- FeatureHeatmap
- 
          FeatureStatPlot()
- Statistical plot of features
- 
          FetchH5()
- Fetch data from the hdf5 file
- 
          GSEAPlot()
- GSEA Plot
- 
          GeneConvert()
- Gene ID conversion function using biomart
- 
          GraphPlot()
- GraphPlot
- 
          GroupHeatmap()
- GroupHeatmap
- 
          Harmony_integrate()
- Harmony_integrate
- 
          Integration_SCP()
- Integration_SCP
- 
          IsSeurat5()
- Check if a Seurat object is version 5
- 
          LIGER_integrate()
- LIGER_integrate
- 
          LineagePlot()
- LineagePlot
- 
          ListDB()
- ListDB
- 
          MNN_integrate()
- MNN_integrate
- 
          PAGAPlot()
- PAGA plot
- 
          PrepareDB()
- Prepare the gene annotation databases
- 
          PrepareEnv()
- Install the SCP python environment
- 
          PrepareSCExplorer()
- Prepare Seurat objects for the SCExplorer
- 
          ProjectionPlot()
- Projection Plot
- 
          RecoverCounts()
- Attempt to recover raw counts from the normalized matrix.
- 
          RemoveEnv()
- Remove SCP Python environment
- 
          RenameClusters()
- Rename clusters for the Seurat object
- 
          RenameFeatures()
- Rename features for the Seurat object
- 
          RunALRA()
- Run ALRA imputation
- 
          RunCSSMap()
- Single-cell reference mapping with CSS method
- 
          RunCellQC()
- Run cell-level quality control for single cell RNA-seq data.
- 
          RunDEtest()
- Differential gene test
- 
          RunDM()
- Run DM (diffusion map)
- 
          RunDimReduction()
- Run dimensionality reduction
- 
          RunDoubletCalling()
- Run doublet-calling for single cell RNA-seq data.
- 
          RunDynamicEnrichment()
- RunDynamicEnrichment
- 
          RunDynamicFeatures()
- RunDynamicFeatures
- 
          RunEnrichment()
- Perform the enrichment analysis (over-representation) on the genes
- 
          RunFR()
- Run Force-Directed Layout (Fruchterman-Reingold algorithm)
- 
          RunGLMPCA()
- Run GLMPCA (generalized version of principal components analysis)
- 
          RunGSEA()
- Perform the enrichment analysis (GSEA) on the genes
- 
          RunHarmony2()
- Run Harmony algorithm
- 
          RunImputation()
- Run imputation methods on Seurat object
- 
          RunKNNMap()
- Single-cell reference mapping with KNN method
- 
          RunKNNPredict()
- RunKNNPredict
- 
          RunKNNSmooth()
- Run KNN-based smoothing imputation
- 
          RunLargeVis()
- Run LargeVis (Dimensionality Reduction with a LargeVis-like method)
- 
          RunMAGIC()
- Run MAGIC imputation
- 
          RunMDS()
- Run MDS (multi-dimensional scaling)
- 
          RunMonocle2()
- Run Monocle2 analysis
- 
          RunMonocle3()
- Run Monocle3 analysis
- 
          RunNMF()
- Run NMF (non-negative matrix factorization)
- 
          RunPAGA()
- Run PAGA analysis
- 
          RunPCAMap()
- Single-cell reference mapping with PCA method
- 
          RunPHATE()
- Run PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding)
- 
          RunPaCMAP()
- Run PaCMAP (Pairwise Controlled Manifold Approximation)
- 
          RunPalantir()
- Run Palantir analysis
- 
          RunSCExplorer()
- RunSCExplorer
- 
          RunSCVELO()
- Run scVelo workflow
- 
          RunScmap()
- Annotate single cells using scmap.
- 
          RunSeuratMap()
- Single-cell reference mapping with Seurat method
- 
          RunSingleR()
- Annotate single cells using SingleR
- 
          RunSlingshot()
- RunSlingshot
- 
          RunSymphonyMap()
- Single-cell reference mapping with Symphony method
- 
          RunTriMap()
- Run TriMap (Large-scale Dimensionality Reduction Using Triplets)
- 
          RunUMAP2()
- Run UMAP (Uniform Manifold Approximation and Projection)
- 
          RunWOT()
- Run WOT analysis
- 
          Scanorama_integrate()
- Scanorama_integrate
- 
          Seurat_integrate()
- Seurat_integrate
- 
          SrtAppend()
- Append a Seurat object to another
- 
          SrtReorder()
- Reorder idents by the gene expression
- 
          Standard_SCP()
- Standard SCP
- 
          StatPlot()
- StatPlot
- 
          Uncorrected_integrate()
- Uncorrected_integrate
- 
          VelocityPlot()
- Velocity Plot
- 
          VolcanoPlot()
- VolcanoPlot
- 
          adata_to_srt()
- Convert an anndata object to a seurat object using reticulate
- 
          adjcolors()
- Convert a color with arbitrary transparency to a fixed color
- 
          blendcolors()
- Blend colors
- 
          check_DataType()
- Check and report the type of data
- 
          check_srtList()
- Check and preprocess a list of seurat objects
- 
          check_srtMerge()
- Check and preprocess a merged seurat object
- 
          choose_k()
- Helper function to choose optimal k for ALRA
- 
          compute_velocity_on_grid()
- Compute velocity on grid The original python code is on https://github.com/theislab/scvelo/blob/master/scvelo/plotting/velocity_embedding_grid.py
- 
          db_DoubletDetection()
- Run doublet-calling with DoubletDetection
- 
          db_Scrublet()
- Run doublet-calling with Scrublet
- 
          db_scDblFinder()
- Run doublet-calling with scDblFinder
- 
          db_scds()
- Run doublet-calling with scds
- 
          drop_data()
- Drop all data in the plot (only one observation is kept)
- 
          fastMNN_integrate()
- fastMNN_integrate
- 
          geom_alluvial()
- geom_alluvial
- 
          geom_alluvial_text()geom_alluvial_label()
- geom_alluvial_label
- 
          geom_sankey()
- geom_sankey
- 
          geom_sankey_bump()
- geom_sankey_bump
- 
          geom_sankey_label()geom_sankey_text()
- geom_sankey_label
- 
          get_feature_metadata()
- Get feature metadata from Seurat object in a version-agnostic way
- 
          get_seurat_data()
- Get data from Seurat object in a version-agnostic way
- 
          get_var_features()
- Get variable features from Seurat object in a version-agnostic way
- 
          get_vars()
- Get used vars in a ggplot object
- 
          ifnb_sub
- A subsetted version of 'ifnb' datasets
- 
          isOutlier()
- Detect outliers using MAD(Median Absolute Deviation) method
- 
          lifemap_celllifemap_compartmentlifemap_organ
- Embryonic Development Database from LifeMap Discovery
- 
          make_long()
- make_long
- 
          matrix_power()
- Helper function for matrix power
- 
          palette_list
- A list of palettes for use in data visualization
- 
          palette_scp()
- Color palettes collected in SCP.
- 
          panc8_sub
- A subsetted version of human 'panc8' datasets
- 
          pancreas_sub
- A subsetted version of mouse 'pancreas' datasets
- 
          panel_fix()panel_fix_overall()
- Set the panel width/height of a plot object to a fixed value.
- 
          scVI_integrate()
- scVI_integrate
- 
          segementsDf()
- Shorten and offset the segment
- 
          set_feature_metadata()
- Set feature metadata in Seurat object in a version-agnostic way
- 
          set_seurat_data()
- Set data in Seurat object in a version-agnostic way
- 
          show_palettes()
- Show the color palettes
- 
          slim_data()
- Drop unused data from the plot to reduce the object size
- 
          srt_to_adata()
- Convert a seurat object to an anndata object using reticulate
- 
          theme_blank()
- Blank theme
- 
          theme_sankey()theme_alluvial()theme_sankey_bump()
- sankey_themes
- 
          theme_scp()
- SCP theme
- 
          words_excluded
- Excluded words in keyword enrichment analysis and extraction